# Install on Terminal of MacOS #pip3 install -U statsmodels #pip3 install -U matplotlib #pip3 install -U numpy #pip3 install -U pandas #pip3 install -U sympy #pip3 install -U requests #pip3 install -U scikit-learn #pip3 install -U scikit-learn #pip3 install -U ipython |
1_MacOS_Terminal.txt
########## Run Terminal on MacOS and execute ### TO UPDATE cd "YOUR_WORKING_DIRECTORY" python3 pr.py 2 rescsv.csv trend 8 |
Input Data files
airline-passengers.csv
"Month","Passengers" "1949-01",112 "1949-02",118 "1949-03",132 "1949-04",129 "1949-05",121 "1949-06",135 "1949-07",148 "1949-08",148 "1949-09",136 "1949-10",119 "1949-11",104 "1949-12",118 "1950-01",115 "1950-02",126 "1950-03",141 "1950-04",135 "1950-05",125 "1950-06",149 "1950-07",170 "1950-08",170 "1950-09",158 "1950-10",133 "1950-11",114 "1950-12",140 "1951-01",145 "1951-02",150 "1951-03",178 "1951-04",163 "1951-05",172 "1951-06",178 "1951-07",199 "1951-08",199 "1951-09",184 "1951-10",162 "1951-11",146 "1951-12",166 "1952-01",171 "1952-02",180 "1952-03",193 "1952-04",181 "1952-05",183 "1952-06",218 "1952-07",230 "1952-08",242 "1952-09",209 "1952-10",191 "1952-11",172 "1952-12",194 "1953-01",196 "1953-02",196 "1953-03",236 "1953-04",235 "1953-05",229 "1953-06",243 "1953-07",264 "1953-08",272 "1953-09",237 "1953-10",211 "1953-11",180 "1953-12",201 "1954-01",204 "1954-02",188 "1954-03",235 "1954-04",227 "1954-05",234 "1954-06",264 "1954-07",302 "1954-08",293 "1954-09",259 "1954-10",229 "1954-11",203 "1954-12",229 "1955-01",242 "1955-02",233 "1955-03",267 "1955-04",269 "1955-05",270 "1955-06",315 "1955-07",364 "1955-08",347 "1955-09",312 "1955-10",274 "1955-11",237 "1955-12",278 "1956-01",284 "1956-02",277 "1956-03",317 "1956-04",313 "1956-05",318 "1956-06",374 "1956-07",413 "1956-08",405 "1956-09",355 "1956-10",306 "1956-11",271 "1956-12",306 "1957-01",315 "1957-02",301 "1957-03",356 "1957-04",348 "1957-05",355 "1957-06",422 "1957-07",465 "1957-08",467 "1957-09",404 "1957-10",347 "1957-11",305 "1957-12",336 "1958-01",340 "1958-02",318 "1958-03",362 "1958-04",348 "1958-05",363 "1958-06",435 "1958-07",491 "1958-08",505 "1958-09",404 "1958-10",359 "1958-11",310 "1958-12",337 "1959-01",360 "1959-02",342 "1959-03",406 "1959-04",396 "1959-05",420 "1959-06",472 "1959-07",548 "1959-08",559 "1959-09",463 "1959-10",407 "1959-11",362 "1959-12",405 "1960-01",417 "1960-02",391 "1960-03",419 "1960-04",461 "1960-05",472 "1960-06",535 "1960-07",622 "1960-08",606 "1960-09",508 "1960-10",461 "1960-11",390 "1960-12",432 |
Python files
########## Additive Model and Multiplicative Model : Decomposing Time Series Data into Trend, Seasonality, and Residual (plus Monthly Average) ######### # # #Run this code on Terminal of MacOS as follows: #python3 ts.py (raw dataset csv file) (model:additive or multiplicative) (frequency) # #For instance, #python3 ts.py airline-passengers.csv multiplicative 12 # #Additive Model # y(t) = Level + Trend + Seasonality + Noise # #Multiplicative Model #y(t) = Level * Trend * Seasonality * Noise # # #Input dataset: #https://raw.githubusercontent.com/jbrownlee/Datasets/master/airline-passengers.csv # # #Reference: #https://machinelearningmastery.com/decompose-time-series-data-trend-seasonality/ #https://stackoverflow.com/questions/45184055/how-to-plot-multiple-seasonal-decompose-plots-in-one-figure ##### import import sys import datetime import pandas as pd import matplotlib.pyplot as plt from statsmodels.tsa.seasonal import seasonal_decompose ##### arguments csvf = str(sys.argv[1]) # e.g., airline-passengers.csv md = str(sys.argv[2]) # e.g., multiplicative frq = int(sys.argv[3]) # e.g., 12 ##### Plot: Raw Dataset dt_now = datetime.datetime.now() #print(dt_now) # 2019-02-04 21:04:15.412854 series = pd.read_csv(csvf, header=0, index_col=0) #print(series) ''' Passengers Month 1949-01 112 1949-02 118 1949-03 132 1949-04 129 1949-05 121 ... ... 1960-08 606 1960-09 508 1960-10 461 1960-11 390 1960-12 432 ''' #print(type(series)) #<class 'pandas.core.frame.DataFrame'> series.plot(figsize=(12,9)) plt.title("Raw Data") plt.savefig("Figure_1_raw_data_" + dt_now.strftime('%Y-%m-%d_%H%M%S') + ".png") plt.show() ##### Plot: Decomposing Raw (Observed) Data into Trend, Seasonality, and Residual dta = series #print(dta) ''' Passengers Month 1949-01 112 1949-02 118 1949-03 132 1949-04 129 1949-05 121 ... ... 1960-08 606 1960-09 508 1960-10 461 1960-11 390 1960-12 432 [144 rows x 1 columns] ''' #print(type(dta)) #<class 'pandas.core.frame.DataFrame'> yname = dta.columns[0] dta.eval(yname).interpolate(inplace=True) ##statsmodels.api.tsa.seasonal_decompose(dta.eval(yname)) #res = seasonal_decompose(dta.eval(yname), model=md, freq=frq) res = seasonal_decompose(dta.eval(yname), model=md, period=frq) #print(res) rescsv = pd.concat([res.observed, res.trend, res.seasonal, res.resid], axis=1, join='outer') #print(rescsv) pd.DataFrame(data=rescsv).to_csv("rescsv.csv", header=True, index=True) def plotseasonal(res, axes ): res.observed.plot(ax=axes[0], legend=False) axes[0].set_ylabel('Observed') res.trend.plot(ax=axes[1], legend=False) axes[1].set_ylabel('Trend') res.seasonal.plot(ax=axes[2], legend=False) axes[2].set_ylabel('Seasonal') res.resid.plot(ax=axes[3], legend=False) axes[3].set_ylabel('Residual') ##### plot # # [Case A] When plotting one raw dataset and its trend, seasonality, and residual fig, axes = plt.subplots(ncols=1, nrows=4, sharex=True, figsize=(12,9)) #print(type(fig)) #<class 'matplotlib.figure.Figure'> # #print(type(axes)) #<class 'numpy.ndarray'> # # #print(axes) ''' [<matplotlib.axes._subplots.AxesSubplot object at 0x128497130> <matplotlib.axes._subplots.AxesSubplot object at 0x129abe2b0> <matplotlib.axes._subplots.AxesSubplot object at 0x129aea430> <matplotlib.axes._subplots.AxesSubplot object at 0x129b17580>] ''' plotseasonal(res, axes[:]) # # # [Case B] When plotting three raw datasets and its trend, seasonality, and residual #fig, axes = plt.subplots(ncols=3, nrows=4, sharex=True, figsize=(12,5)) #plotseasonal(res, axes[:,0]) #plotseasonal(res, axes[:,1]) #plotseasonal(res, axes[:,2]) plt.tight_layout() plt.savefig("Figure_2_raw_data_trend_seasonality_residual_" + md + "_" + dt_now.strftime('%Y-%m-%d_%H%M%S') + ".png") plt.show() ##### Plot: Raw (Observed) Data Monthly Average # Convert to Pandas.Series (x and index: Month, y: Passengers) dta2 = pd.Series(dta[yname], dtype='float') # #print(dta2) ''' Month 1949-01 112.0 1949-02 118.0 1949-03 132.0 1949-04 129.0 1949-05 121.0 ... 1960-08 606.0 1960-09 508.0 1960-10 461.0 1960-11 390.0 1960-12 432.0 Name: Passengers, Length: 144, dtype: float64 ''' # #print(dta2.index) ''' Index(['1949-01', '1949-02', '1949-03', '1949-04', '1949-05', '1949-06', '1949-07', '1949-08', '1949-09', '1949-10', ... '1960-03', '1960-04', '1960-05', '1960-06', '1960-07', '1960-08', '1960-09', '1960-10', '1960-11', '1960-12'], dtype='object', name='Month', length=144) ''' #print(dta2.index.values) # #dta2.index = pd.to_datetime(dta2['Month']) dta2.index = pd.to_datetime(dta2.index) # #print(dta2.index) ''' DatetimeIndex(['1949-01-01', '1949-02-01', '1949-03-01', '1949-04-01', '1949-05-01', '1949-06-01', '1949-07-01', '1949-08-01', '1949-09-01', '1949-10-01', ... '1960-03-01', '1960-04-01', '1960-05-01', '1960-06-01', '1960-07-01', '1960-08-01', '1960-09-01', '1960-10-01', '1960-11-01', '1960-12-01'], dtype='datetime64[ns]', name='Month', length=144, freq=None) ''' # monthly_mean = dta2.groupby(dta2.index.month).mean() #print(monthly_mean) ''' Month 1 241.750000 2 235.000000 3 270.166667 4 267.083333 5 271.833333 6 311.666667 7 351.333333 8 351.083333 9 302.416667 10 266.583333 11 232.833333 12 261.833333 Name: Passengers, dtype: float64 ''' #print(type(monthly_mean)) #<class 'pandas.core.series.Series'> pd.DataFrame(data=monthly_mean).to_csv("monthly_mean.csv", header=True, index=True) monthly_mean.plot(kind='bar') plt.title("Raw Data: Monthly Average") plt.savefig("Figure_3_raw_data_monthly average_" + dt_now.strftime('%Y-%m-%d_%H%M%S') + ".png") plt.show() |
########## Polynomial Regression (x: date vs y: Passengers) ########## ##### Run this script as follows: # #python3 pr.py (the number of degrees/orders of the polynominal regression model) (a file name that has two columns, date & new_cases) new_cases (signigicant figures of the polynominal regression model coefficients) # # For instance, #python3 pr.py 2 rescsv.csv trend 8 ### import import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import r2_score import sys import datetime import os import sympy as sym from sympy.plotting import plot from IPython.display import display import pandas as pd ### arguments deg = int(sys.argv[1]) trainingcsv = sys.argv[2] yname = sys.argv[3] coefdecimals = int(sys.argv[4]) ### datetime dt_now = datetime.datetime.now() #print(dt_now) # 2019-02-04 21:04:15.412854 ### Training Data tmp_training = pd.read_csv(trainingcsv) #print(tmp_training) # # Delete all ROWS which has one or more NaN. #print(tmp_training.dropna(how='any', axis=0)) tmp_training = tmp_training.dropna(how='any', axis=0) # #print(tmp_training) x_training = tmp_training.index.values.tolist() y_training = tmp_training[yname].values.tolist() ### LSM # #least-squares method (Degree of the polynomial fitting: n) #LSM (Deg: n) cf = ["LSM (Deg: " + str(deg) + ")", lambda x, y: np.polyfit(x, y, deg)] sym.init_printing(use_unicode=True) x, y = sym.symbols("x y") for method_name, method in [cf]: #print(method_name) ### calculating coefficients coefficients = method(x_training, y_training) #print(type(coefficients)) #<class 'numpy.ndarray'> coefficients = np.round(coefficients, decimals = coefdecimals) ### sympy to show an equation expr = 0 for index, coefficient in enumerate(coefficients): expr += coefficient * x ** (len(coefficients) - index - 1) display(sym.Eq(y, expr)) ###R2 fitted_curve = np.poly1d(method(x_training, y_training)) r2 = r2_score(y_training, fitted_curve(x_training)) ### Scatter Plot plt.figure(figsize=(12, 9)) plt.scatter(x_training, y_training, label="Training Data") # # data plotting and drawing a fitted model x_latent = np.linspace(min(x_training), max(x_training), 100) fitted_curve = np.poly1d(method(x_training, y_training))(x_latent) plt.plot(x_latent, fitted_curve, c="red", label="Polynominal Regession") plt.title("Polynominal Regession of " + str(yname)) plt.xlabel('Days') plt.ylabel(yname) plt.grid() plt.legend(bbox_to_anchor=(0, 1), loc='upper left', borderaxespad=0, fontsize=12) plt.text(min(x_training),max(y_training)*0.80, sym.Eq(y, expr), fontsize=12) plt.text(min(x_training),max(y_training)*0.70, "R2 = " + str(r2), fontsize=12) plt.savefig("Figure_4_Polynominal_Regression_deg_" + str(deg) + "_" + dt_now.strftime('%Y-%m-%d_%H%M%S') + ".png") plt.show() ##### Output CSV #print(x_latent) print(len(x_latent)) #print(fitted_curve) print(len(fitted_curve)) # outputcsv = pd.concat([pd.Series(x_training), pd.Series(y_training)], axis=1, join='outer') #outputcsv = pd.concat([pd.Series(x_training), pd.Series(y_training), pd.Series(fitted_curve)], axis=1, join='outer') print(outputcsv) pd.DataFrame(data=outputcsv).to_csv("outputcsv.csv", header=True, index=True) |
Output Data files
rescsv.csv
Month,Passengers,trend,seasonal,resid 1949-01,112.0,,0.9102303673722006, 1949-02,118.0,,0.8836253206943756, 1949-03,132.0,,1.0073662876035454, 1949-04,129.0,,0.9759060123228472, 1949-05,121.0,,0.9813780274951293, 1949-06,135.0,,1.1127758266792729, 1949-07,148.0,126.79166666666666,1.2265555429312012,0.9516643164028834 1949-08,148.0,127.24999999999999,1.2199109694456252,0.9534014056242447 1949-09,136.0,127.95833333333331,1.0604919326468183,1.00221976781656 1949-10,119.0,128.58333333333331,0.9217572404104976,1.0040277671042104 1949-11,104.0,128.99999999999997,0.8011780824134743,1.0062701015971256 1949-12,118.0,129.75,0.8988243899850112,1.011811921520978 1950-01,115.0,131.25,0.9102303673722006,0.9626029932620286 1950-02,126.0,133.08333333333334,0.8836253206943756,1.0714668098946898 1950-03,141.0,134.91666666666669,1.0073662876035454,1.0374474253490114 1950-04,135.0,136.41666666666666,0.9759060123228472,1.0140476000435144 1950-05,125.0,137.41666666666669,0.9813780274951293,0.9269029690018589 1950-06,149.0,138.75000000000003,1.1127758266792729,0.9650406201566315 1950-07,170.0,140.91666666666666,1.2265555429312012,0.9835565624018564 1950-08,170.0,143.16666666666669,1.2199109694456252,0.9733720498615518 1950-09,158.0,145.70833333333331,1.0604919326468183,1.022504733680162 1950-10,133.0,148.41666666666666,0.9217572404104976,0.9721928212238378 1950-11,114.0,151.54166666666666,0.8011780824134743,0.9389527366650869 1950-12,140.0,154.70833333333331,0.8988243899850112,1.006791359050623 1951-01,145.0,157.125,0.9102303673722006,1.0138445970332666 1951-02,150.0,159.54166666666666,0.8836253206943756,1.0640180175116092 1951-03,178.0,161.83333333333331,1.0073662876035454,1.0918541020514378 1951-04,163.0,164.125,0.9759060123228472,1.0176650782477634 1951-05,172.0,166.66666666666666,0.9813780274951293,1.0515825411682371 1951-06,178.0,169.0833333333333,1.1127758266792729,0.9460443984897541 1951-07,199.0,171.24999999999997,1.2265555429312012,0.9474041369895129 1951-08,199.0,173.58333333333331,1.2199109694456252,0.9397599140119374 1951-09,184.0,175.45833333333331,1.0604919326468183,0.9888637442578553 1951-10,162.0,176.83333333333331,0.9217572404104976,0.9938808513926574 1951-11,146.0,178.04166666666669,0.8011780824134743,1.0235336960240646 1951-12,166.0,180.16666666666669,0.8988243899850112,1.0250824443004556 1952-01,171.0,183.125,0.9102303673722006,1.0258813915429423 1952-02,180.0,186.20833333333331,0.8836253206943756,1.0939695651963173 1952-03,193.0,189.04166666666663,1.0073662876035454,1.0134734098250622 1952-04,181.0,191.29166666666663,0.9759060123228472,0.9695596432636905 1952-05,183.0,193.5833333333333,0.9813780274951293,0.9632672518184556 1952-06,218.0,195.83333333333331,1.1127758266792729,1.0003735367649653 1952-07,230.0,198.0416666666666,1.2265555429312012,0.9468562364697322 1952-08,242.0,199.74999999999997,1.2199109694456252,0.9931170579946488 1952-09,209.0,202.20833333333334,1.0604919326468183,0.9746302068393307 1952-10,191.0,206.24999999999997,0.9217572404104976,1.0046686540245588 1952-11,172.0,210.41666666666666,0.8011780824134743,1.0202797112370305 1952-12,194.0,213.375,0.8988243899850112,1.0115406663515256 1953-01,196.0,215.83333333333331,0.9102303673722006,0.9976684371998933 1953-02,196.0,218.5,0.8836253206943756,1.0151646298680175 1953-03,236.0,220.91666666666663,1.0073662876035454,1.0604644361877407 1953-04,235.0,222.91666666666663,0.9759060123228472,1.0802327213533813 1953-05,229.0,224.08333333333331,0.9813780274951293,1.0413329150091515 1953-06,243.0,224.70833333333331,1.1127758266792729,0.971805633482808 1953-07,264.0,225.33333333333334,1.2265555429312012,0.9551932971060005 1953-08,272.0,225.33333333333334,1.2199109694456252,0.9894989240604416 1953-09,237.0,224.95833333333331,1.0604919326468183,0.9934337063380791 1953-10,211.0,224.58333333333334,0.9217572404104976,1.0192679634537005 1953-11,180.0,224.45833333333331,0.8011780824134743,1.0009392308728386 1953-12,201.0,225.54166666666666,0.8988243899850112,0.9915038921474064 1954-01,204.0,228.0,0.9102303673722006,0.9829784570782156 1954-02,188.0,230.45833333333331,0.8836253206943756,0.9232031554773301 1954-03,235.0,232.24999999999997,1.0073662876035454,1.004441682597805 1954-04,227.0,233.91666666666663,0.9759060123228472,0.9943898827760491 1954-05,234.0,235.625,0.9813780274951293,1.0119479145163468 1954-06,264.0,237.74999999999997,1.1127758266792729,0.9978740263893865 1954-07,302.0,240.5,1.2265555429312012,1.0237752892269063 1954-08,293.0,243.95833333333334,1.2199109694456252,0.98451837489729 1954-09,259.0,247.16666666666666,1.0604919326468183,0.9881036290010385 1954-10,229.0,250.24999999999997,0.9217572404104976,0.9927612987096137 1954-11,203.0,253.49999999999997,0.8011780824134743,0.9995143055122108 1954-12,229.0,257.125,0.8988243899850112,0.9908691997123485 1955-01,242.0,261.8333333333333,0.9102303673722006,1.0154045633681739 1955-02,233.0,266.66666666666663,0.8836253206943756,0.9888240858844841 1955-03,267.0,271.125,1.0073662876035454,0.9775844472954781 1955-04,269.0,275.2083333333333,0.9759060123228472,1.0015732252714535 1955-05,270.0,278.5,0.9813780274951293,0.9878755449160926 1955-06,315.0,281.9583333333333,1.1127758266792729,1.0039635286058564 1955-07,364.0,285.75,1.2265555429312012,1.038551231735955 1955-08,347.0,289.33333333333337,1.2199109694456252,0.9831117071644834 1955-09,312.0,293.24999999999994,1.0604919326468183,1.0032500825069086 1955-10,274.0,297.1666666666667,0.9217572404104976,1.0003083921250941 1955-11,237.0,301.0,0.8011780824134743,0.9827720360378518 1955-12,278.0,305.45833333333326,0.8988243899850112,1.0125534772990237 1956-01,284.0,309.9583333333333,0.9102303673722006,1.006615706613454 1956-02,277.0,314.4166666666667,0.8836253206943756,0.9970250216162121 1956-03,317.0,318.625,1.0073662876035454,0.9876248322104635 1956-04,313.0,321.74999999999994,0.9759060123228472,0.9968223994127333 1956-05,318.0,324.5,0.9813780274951293,0.9985644225806528 1956-06,374.0,327.08333333333326,1.1127758266792729,1.027556011760332 1956-07,413.0,329.54166666666663,1.2265555429312012,1.0217684733250962 1956-08,405.0,331.8333333333333,1.2199109694456252,1.0004764655259983 1956-09,355.0,334.45833333333326,1.0604919326468183,1.0008729746411495 1956-10,306.0,337.5416666666667,0.9217572404104976,0.983507052164718 1956-11,271.0,340.5416666666667,0.8011780824134743,0.9932760726708177 1956-12,306.0,344.0833333333333,0.8988243899850112,0.9894251399019294 1957-01,315.0,348.25,0.9102303673722006,0.993729329946053 1957-02,301.0,353.0,0.8836253206943756,0.964991833258292 1957-03,356.0,357.625,1.0073662876035454,0.9881769386852579 1957-04,348.0,361.375,0.9759060123228472,0.9867636566481572 1957-05,355.0,364.5,0.9813780274951293,0.9924176745109158 1957-06,422.0,367.16666666666674,1.1127758266792729,1.0328601494311507 1957-07,465.0,369.45833333333337,1.2265555429312012,1.0261249953429645 1957-08,467.0,371.2083333333333,1.2199109694456252,1.0312667769357124 1957-09,404.0,372.1666666666666,1.0604919326468183,1.0236147216993436 1957-10,347.0,372.41666666666663,0.9217572404104976,1.0108432339509779 1957-11,305.0,372.75,0.8011780824134743,1.0212995188396765 1957-12,336.0,373.625,0.8988243899850112,1.0005262806704482 1958-01,340.0,375.25,0.9102303673722006,0.9954212223576867 1958-02,318.0,377.9166666666667,0.8836253206943756,0.9522761826670493 1958-03,362.0,379.49999999999994,1.0073662876035454,0.9469114707882059 1958-04,348.0,380.0,0.9759060123228472,0.9383992537400733 1958-05,363.0,380.70833333333337,0.9813780274951293,0.9715785356347435 1958-06,435.0,380.95833333333337,1.1127758266792729,1.0261340434482746 1958-07,491.0,381.8333333333333,1.2265555429312012,1.0483841196851822 1958-08,505.0,383.6666666666666,1.2199109694456252,1.0789695108337816 1958-09,404.0,386.49999999999994,1.0604919326468183,0.9856540205065262 1958-10,359.0,390.3333333333333,0.9217572404104976,0.9977971302743561 1958-11,310.0,394.7083333333333,0.8011780824134743,0.9802939860543499 1958-12,337.0,398.625,0.8988243899850112,0.9405686948769 1959-01,360.0,402.54166666666663,0.9102303673722006,0.9825176026958595 1959-02,342.0,407.1666666666667,0.8836253206943756,0.950573575014168 1959-03,406.0,411.875,1.0073662876035454,0.9785278460391813 1959-04,396.0,416.33333333333326,0.9759060123228472,0.9746439890036597 1959-05,420.0,420.49999999999994,0.9813780274951293,1.0177637071285097 1959-06,472.0,425.5,1.1127758266792729,0.9968613350903052 1959-07,548.0,430.7083333333333,1.2265555429312012,1.0373135823544246 1959-08,559.0,435.125,1.2199109694456252,1.053100054130422 1959-09,463.0,437.7083333333333,1.0604919326468183,0.9974446537535596 1959-10,407.0,440.95833333333326,0.9217572404104976,1.0013370766167895 1959-11,362.0,445.8333333333333,0.8011780824134743,1.0134608455294587 1959-12,405.0,450.625,0.8988243899850112,0.9999191652088765 1960-01,417.0,456.3333333333333,0.9102303673722006,1.0039279399429428 1960-02,391.0,461.37499999999994,0.8836253206943756,0.9590793646523456 1960-03,419.0,465.20833333333326,1.0073662876035454,0.8940856500108696 1960-04,461.0,469.3333333333332,0.9759060123228472,1.0064947912800382 1960-05,472.0,472.74999999999994,0.9813780274951293,1.0173587647555493 1960-06,535.0,475.04166666666663,1.1127758266792729,1.0120789574210476 1960-07,622.0,,1.2265555429312012, 1960-08,606.0,,1.2199109694456252, 1960-09,508.0,,1.0604919326468183, 1960-10,461.0,,0.9217572404104976, 1960-11,390.0,,0.8011780824134743, 1960-12,432.0,,0.8988243899850112, |
monthly_mean.csv
Month,Passengers 1,241.75 2,235.0 3,270.1666666666667 4,267.0833333333333 5,271.8333333333333 6,311.6666666666667 7,351.3333333333333 8,351.0833333333333 9,302.4166666666667 10,266.5833333333333 11,232.83333333333334 12,261.8333333333333 |
outputcsv.csv
,0,1 0,6,126.79166666666666 1,7,127.25 2,8,127.95833333333331 3,9,128.58333333333331 4,10,128.99999999999997 5,11,129.75 6,12,131.25 7,13,133.08333333333334 8,14,134.91666666666669 9,15,136.41666666666666 10,16,137.41666666666669 11,17,138.75000000000003 12,18,140.91666666666666 13,19,143.16666666666669 14,20,145.70833333333331 15,21,148.41666666666666 16,22,151.54166666666666 17,23,154.70833333333331 18,24,157.125 19,25,159.54166666666666 20,26,161.83333333333331 21,27,164.125 22,28,166.66666666666666 23,29,169.08333333333331 24,30,171.24999999999997 25,31,173.58333333333331 26,32,175.45833333333331 27,33,176.83333333333331 28,34,178.04166666666669 29,35,180.16666666666669 30,36,183.125 31,37,186.2083333333333 32,38,189.04166666666663 33,39,191.29166666666663 34,40,193.58333333333331 35,41,195.8333333333333 36,42,198.0416666666666 37,43,199.75 38,44,202.20833333333331 39,45,206.25 40,46,210.41666666666663 41,47,213.375 42,48,215.8333333333333 43,49,218.5 44,50,220.91666666666663 45,51,222.91666666666663 46,52,224.0833333333333 47,53,224.7083333333333 48,54,225.33333333333331 49,55,225.33333333333331 50,56,224.9583333333333 51,57,224.58333333333331 52,58,224.4583333333333 53,59,225.54166666666663 54,60,228.0 55,61,230.4583333333333 56,62,232.25 57,63,233.91666666666663 58,64,235.625 59,65,237.75 60,66,240.5 61,67,243.95833333333331 62,68,247.16666666666663 63,69,250.25 64,70,253.5 65,71,257.125 66,72,261.8333333333333 67,73,266.66666666666663 68,74,271.125 69,75,275.2083333333333 70,76,278.5 71,77,281.9583333333333 72,78,285.75 73,79,289.33333333333337 74,80,293.24999999999994 75,81,297.1666666666667 76,82,301.0 77,83,305.45833333333326 78,84,309.9583333333333 79,85,314.4166666666667 80,86,318.625 81,87,321.74999999999994 82,88,324.5 83,89,327.08333333333326 84,90,329.54166666666663 85,91,331.8333333333333 86,92,334.45833333333326 87,93,337.5416666666667 88,94,340.5416666666667 89,95,344.08333333333326 90,96,348.25 91,97,353.0 92,98,357.625 93,99,361.375 94,100,364.5 95,101,367.16666666666674 96,102,369.45833333333337 97,103,371.20833333333326 98,104,372.16666666666663 99,105,372.4166666666666 100,106,372.75 101,107,373.625 102,108,375.25 103,109,377.91666666666674 104,110,379.5 105,111,380.0 106,112,380.70833333333337 107,113,380.95833333333337 108,114,381.83333333333326 109,115,383.66666666666663 110,116,386.5 111,117,390.33333333333326 112,118,394.70833333333326 113,119,398.625 114,120,402.5416666666666 115,121,407.16666666666674 116,122,411.875 117,123,416.33333333333326 118,124,420.5 119,125,425.5 120,126,430.70833333333326 121,127,435.125 122,128,437.70833333333326 123,129,440.95833333333326 124,130,445.83333333333326 125,131,450.625 126,132,456.33333333333326 127,133,461.375 128,134,465.20833333333326 129,135,469.3333333333332 130,136,472.75 131,137,475.0416666666666 |
Figures
Figure_1_raw_data_2020-06-06_101033.png
Figure_2_raw_data_trend_seasonality_residual_multiplicative_2020-06-06_101033.png
Figure_3_raw_data_monthly average_2020-06-06_101033.png
Figure_4_Polynominal_Regression_deg_2_2020-06-06_101040.png
No comments:
Post a Comment